Thumbnail pH-Berekeningen (VWO)

Dit is een vereenvoudigde samenvatting van hoe je de pH van een oplossing berekent. Voor een uitgebreidere behandeling, zie:

> Samenvatting "Zuren en Basen"
> Zuur-base buffers

Bij het berekenen van de pH van een oplossing, bereken je voor die oplossing steeds de uiteindelijke waterstofionen-concentratie [H3O+] of de uiteindelijke hydroxideionen-concentratie [OH-], beide uitgedrukt in mol per liter (mol L-1). Het maakt hierbij niet uit of de oplossing een mengsel van meerdere stoffen is of niet.

Alvorens je een pH-berekening kunt maken, moet je eerst weten of het zuur of de base sterk of zwak is.
Heb je een sterk zuur of een sterke base, dan kun je het totaal aantal H3O+ ionen (of OH- ionen) direct berekenen uit de hoeveelheid zuur of base die aan de oplossing is toegevoegd.
Bij zwakke zuren en zwakke basen kan dit niet.

In de BINAS tabel 49 staan de sterke zuren in de linker kolom boven H3O+ ; H3O+ is zelf ook een sterk zuur.
De sterke basen staan in de rechter kolom, onder OH- ; OH- is zelf ook een sterke base.

Het is altijd handig om even op een kladblaadje een schets te maken van het meest voorkomende pH-gebied (0 - 14):

pH-Waarde 0-14

Maar let op: pH-waarden kleiner dan nul (heel erg zuur) en groter dan 14 (heel erg basisch) kunnen ook voorkomen !
Het bovenstaande schema zorgt er alleen maar voor, dat je niet vergeet dat een lagere pH zuurder is en een hogere pH basischer; hiermee gaat menigeen namelijk in de fout (je bent hierbij gewaarschuwd).

ThumbnailEén sterk zuur in de oplossing

> Hoeveel mol sterk zuur is er opgelost in hoeveel liter oplossing ?
> Als het zuur één H+ ion afsplitst, dit overdraagt op een watermolecuul en daardoor één H3O+ ion doet ontstaan (zoals alle sterke zuren in BINAS-tabel 49), weet je het aantal mol H3O+ dat ontstaat.
> Bereken de concentratie H3O+ in mol per liter: Aantal mol H3O+ gedeeld door het volume van de oplossing (in liter).
> Bereken de pH als volgt: pH = - log ( [ H3O+] ).

ThumbnailEén sterke base in de oplossing

> Hoeveel mol sterke base is er opgelost in hoeveel liter oplossing ?
> Als de base één OH- ion doet ontstaan (zoals alle sterke basen in BINAS-tabel 49, behalve O2- die doet twee OH- ionen ontstaan), dan weet je het aantal mol OH- dat ontstaat.
> Bereken de concentratie OH- in mol per liter: Aantal mol OH- gedeeld door het volume van de oplossing (in liter).
> Bereken nu eerst de pOH als volgt: pOH = - log ( [ OH-] ).
> Bereken dan de pH als volgt: pH = 14 - pOH (zie noot).

Noot
De formule pH = 14 - pOH geldt alleen bij T = 298 K.
Bij een andere temperatuur moet je de waarde van de waterconstante Kw weten en hieruit de pKw berekenen met: pKw = - log (Kw). Het kan natuurlijk ook zijn dat de pKw waarde al gegeven is.
Vervolgens bereken je de pH als volgt: pH = pKw - pOH.

ThumbnailEen sterk zuur EN een sterke base samen in een oplossing

Het sterke zuur levert H3O+ ionen, de sterke base levert OH- ionen. Je kunt uitrekenen hoeveel mol H3O+ ionen en hoeveel mol OH- ionen de afzonderlijke stoffen elk leveren.

De samengevoegde H3O+ ionen en OH- ionen reageren met elkaar (ze 'eten' elkaar op, officieel heet het 'ze neutraliseren elkaar') volgens de reactievergelijking:

H3O++ OH- --> 2 H2O

H3O+ en OH- reageren met elkaar in de molverhouding 1 : 1.
Oftewel: één H3O+ ion reageert met één OH- ion. Dit is een aflopende reactie, want een sterk zuur reageert hier met een sterke base.

Dus kijk eerst hoeveel mol H3O+ ionen er is toegevoegd. En ook hoeveel mol OH- ionen er is toegevoegd.
Streep dan gelijke hoeveelheden H3O+ en OH- ionen tegen elkaar weg. Er blijven dan waarschijnlijk H3O+ ionen of OH- ionen over.

Bijvoorbeeld 1
Aan 1,0 liter oplossing (eindvolume) zijn 0,250 mol H3O+ ionen toegevoegd en 0,205 mol OH- ionen. De OH- ionen zijn dus in de minderheid.
De 0,205 mol OH- ionen worden helemaal geneutraliseerd door 0,205 mol H3O+ ionen (molverhouding 1 : 1).
Dus blijft er van de H3O+ ionen 0,250 mol - 0,205 mol = 0,045 mol H3O+ ionen over. Deze bevinden zich in 1,0 liter (het eindevolume) dus de uiteindelijke concentratie H3O+ ionen is 0,045 mol / 1,0 liter = 0,045 mol L-1.

De pH van het mengsel is dan pH = - log ( [ H3O+] ) = - log ( 0,045 ) = 1,35

Controleer je antwoord en kijk of het logisch is !
Er blijven uiteindelijk H3O+ ionen over, dus de oplossing moet zuur zijn. Een pH-waarde van 1,35 hoort inderdaad bij een zure oplossing (zie plaatje boven).

Bijvoorbeeld 2
Aan 1,0 liter oplossing (eindvolume) zijn 0,150 mol H3O+ ionen toegevoegd en 0,205 mol OH- ionen. De H3O+ ionen zijn nu in de minderheid.
De 0,150 mol H3O+ ionen worden helemaal geneutraliseerd door 0,150 mol OH- ionen (molverhouding 1 : 1).
Dus blijft er van de OH- ionen 0,205 mol - 0,150 mol = 0,055 mol OH- ionen over. Deze bevinden zich in 1,0 liter (het eindevolume) dus de uiteindelijke concentratie OH- ionen is 0,055 mol / 1,0 liter = 0,055 mol L-1.

De pOH van het mengsel is dan pOH = - log ( [ OH-] ) = - log ( 0,055 ) = 1,26
Maar we willen de pH weten en niet de pOH...
Als T = 298 K, dan geldt: pH = 14,00 - pOH, oftewel pH = 14,00 - 1,26 = 12,74.

Controleer je antwoord en kijk of het logisch is !
Er blijven uiteindelijk OH- ionen over, dus de oplossing moet basisch zijn. Een pH-waarde van 12,74 hoort inderdaad bij een basische oplossing (zie plaatje boven).

ThumbnailEén zwak zuur of één zwakke base in de oplossing

Voor het eindexamen VWO moet je ook van een oplossing van één zwak zuur of één zwakke base de pH kunnen uitrekenen. Hoe dat in zijn werk gaat, kun je lezen in de Samenvatting Zuren en Basen (klik hier).

ThumbnailpH-Berekeningen aan buffers

Voor het eindexamen VWO moet je ook de pH van een eenvoudige buffer kunnen uitrekenen. Hoe dat in zijn werk gaat, kun je lezen in Zuur-base buffers (klik hier).

ThumbnailSignificante cijfers

Ook bij het berekenen van de pH moet je rekening houden met het juiste aantal significante cijfers. Doordat de pH door middel van een logaritme wordt berekend, geldt een andere regel dan dat je gewend bent:

De pH-waarde moet gegeven worden in een aantal decimalen dat gelijk is aan het aantal significante cijfers van de H3O+-concentratie. Voor de pOH-waarde geldt hetzelfde principe (zie voorbeeld).

Voorbeelden:
Als [H3O+] = 0,0015 mol L-1 (twee significante cijfers), dan is de pH gelijk aan 2,82 (twee decimalen).
Als [OH-] = 0,0215 mol L-1 (drie significante cijfers), dan is de pOH gelijk aan 1,668 (drie decimalen).

ThumbnailWeetje

Waar komt de afkorting pH vandaan?
Je weet vast dat in de scheikunde de afkorting "p" vaak wordt gebruikt voor "logaritme van...", om precies te zijn: voor de "negatieve logaritme van...".
pH staat daarom voor de negatieve logaritme van H (de H3O+-ionenconcentratie). pOH is de negatieve logaritme van OH (de OH--ionenconcentratie). De evenwichtsconstante K wordt in tabellen vaak als pK vermeld, inderdaad: de negatieve logaritme van...
Het voorvoegsel "p" (kleine letter) komt van het Latijnse woord potentia dat "macht" betekent; bedoeld wordt de wiskundige macht van 10. En als je de macht van 10 wilt weten waarvoor de uitkomst gelijk is aan een bepaald getal, dan heb je het over de logaritme van dat getal. Vandaar...

Noot: Waarom neemt men de negatieve logaritme en niet de 'gewone' logaritme? Omdat de in te vullen waarden vaak zo klein zijn dat een gewone logaritme meestal tot negatieve waarden zou leiden en scheikundigen rekenen - als het even kan - liever met positieve getallen. Dat een hogere H3O+-concentratie dan een lagere pH-waarde geeft, neemt men maar voor lief...

Heb je een opmerking over dit artikel, of wil je reageren, ga dan naar het forum.


Disclaimer
Deze informatie is samengesteld ter ondersteuning van het vak scheikunde voor VWO. Het dient als richtlijn en is niet bedoeld als vervanging of complete weergave van de les- en examenstof, noch als indicatie van de (eind)exameneisen.
Wijzigingen, spel-, typ- en zetfouten voorbehouden.

Hello spam click here